Search results for "Well-posed problem"
showing 9 items of 9 documents
Well-posed nonlinear problems in integrated circuits modeling
1991
In this paper we study the problem (E) + (BC) + (IC) (see below) which represents a model for integrated circuits. We assume that the distributed parametersr(x) andc(x) are nonconstant, dielectric leakages depend on thex-coordinate as well as the voltage level, while the interconnecting multiport is nonlinear and possibly multivalued.
Multicomponent line profile restoring by means of ill-posed inverse task solution
2017
The investigation of the criteria of usage of the Tikhonov regularization method for multicomponent overlapping line profiles restoring was done by means of model task solution. The influence of the width and kind of the instrumental function, number of the components of the profile and distance between components are discussed.
Outer boundary conditions for Einstein's field equations in harmonic coordinates
2007
We analyze Einstein's vacuum field equations in generalized harmonic coordinates on a compact spatial domain with boundaries. We specify a class of boundary conditions which is constraint-preserving and sufficiently general to include recent proposals for reducing the amount of spurious reflections of gravitational radiation. In particular, our class comprises the boundary conditions recently proposed by Kreiss and Winicour, a geometric modification thereof, the freezing-Psi0 boundary condition and the hierarchy of absorbing boundary conditions introduced by Buchman and Sarbach. Using the recent technique developed by Kreiss and Winicour based on an appropriate reduction to a pseudo-differe…
Optimization of conducting structures by using the homogenization method
2002
Approximation and numerical realization of a class of optimization problems with control variables represented by coefficients of linear elliptic state equations is considered. Convergence analysis of well-posed problems is performed by using one- and two-level approximation strategies. The latter is utilized in an optimization layout problem for two conductive constituents, for which the necessary steps to transfer the well-posed problem into a computational form are described and some numerical experiments are given.
Rotationally symmetric 1-harmonic flows from D2 TO S 2: Local well-posedness and finite time blowup
2010
The 1-harmonic flow from the disk to the sphere with constant Dirichlet boundary conditions is analyzed in the case of rotational symmetry. Sufficient conditions on the initial datum are given, such that a unique classical solution exists for short times. Also, a sharp criterion on the boundary condition is identified, such that any classical solution will blow up in finite time. Finally, nongeneric examples of finite time blowup are exhibited for any boundary condition.
On the discrete linear ill‐posed problems
1999
An inverse problem of photo‐acoustic spectroscopy of semiconductors is investigated. The main problem is formulated as the integral equation of the first kind. Two different regularization methods are applied, the algorithms for defining regularization parameters are given. Diskrečiųjų blogai sąlygotų uždavinių klausimu Santrauka Darbe nagrinejamas foto‐akustines spektroskopijos puslaidininkiuose uždavinys, kuriame i vertinami nešeju difuzijos ir rekombinacijos procesai. Reikia atstatyti šaltinio funkcija f(x), jei žinoma antrosios eiles difuzijos lygtis ir atitinkamos kraštines salygos. Naudojantis matavimu, atliktu ivairiuose dažniuose, rezultatais sprendžiamas atvirkštinis uždavinys, kel…
Well-posedness of a nonlinear evolution equation arising in growing cell population
2011
We prove that a nonlinear evolution equation which comes from a model of an age-structured cell population endowed with general reproduction laws is well-posed. Copyright © 2011 John Wiley & Sons, Ltd.
Fast nonstationary preconditioned iterative methods for ill-posed problems, with application to image deblurring
2013
We introduce a new iterative scheme for solving linear ill-posed problems, similar to nonstationary iterated Tikhonov regularization, but with an approximation of the underlying operator to be used for the Tikhonov equations. For image deblurring problems, such an approximation can be a discrete deconvolution that operates entirely in the Fourier domain. We provide a theoretical analysis of the new scheme, using regularization parameters that are chosen by a certain adaptive strategy. The numerical performance of this method turns out to be superior to state-of-the-art iterative methods, including the conjugate gradient iteration for the normal equation, with and without additional precondi…
Well-posedness of Prandtl equations with non-compatible data
2013
In this paper we shall be concerned with Prandtl's equations with incompatible data, i.e. with initial data that, in general, do not fulfil the boundary conditions imposed on the solution. Under the hypothesis of analyticity in the streamwise variable, we shall prove that Prandtl's equations, on the half-plane or on the half-space, are well posed for a short time.